202. The Dependence of the Viscosity of Fluids on the Molecular Volume, and an Application of the Principle of the Continuity of State.

By David T. Lewis.

The viscosities of gases are shown to depend on the molecular weight and the molecular cross-sectional area, as predicted mathematically by Chapman. The derived parachor equation is shown to account satisfactorily for the behaviour of fluids in general, and is applied to many liquids, a generalisation emphasising the importance of the principle of the continuity of state.

Andrade's equation for the variation of the viscosity of a simple substance with temperature is shown to follow directly from the general equation, and the connexion between the constants of this equation and the molecular weight and volume is demonstrated.

Part I. The Viscosity of Gases.
Chapman (Proc. Roy. Soc., 1916, $A, 93,1$) has mathematically derived the following expression connecting the viscosity, η, with the gaseous density, σ (in g. per c.c.), the mean velocity of the molecules, ω, and the mean free path, L :

$$
\begin{equation*}
\eta=0 \cdot 499 \sigma \omega L / \sqrt{2} \tag{I}
\end{equation*}
$$

It follows from the kinetic theory that ω is given by the expression

$$
\begin{equation*}
\omega=0.92 \sqrt{3 p / \sigma} \tag{2}
\end{equation*}
$$

where p is the pressure in dynes per sq. cm. Jeans (" Dynamical Theory of Gases," p. 37) has shown that L is related to the molecular diameter, S, and the number of molecules per c.c., n, by means of the equation

$$
\begin{equation*}
L=1 \cdot 319 / \pi S^{2} n \sqrt{2} \tag{3}
\end{equation*}
$$

Elimination of L and ω between (1), (2), and (3) yields the following expression for η :

$$
\begin{equation*}
\eta=\text { const. } \sqrt{p \sigma} / \pi S^{2} n \tag{4}
\end{equation*}
$$

At constant temperature and pressure, n is the same for all gases, and since σ is directly proportional to the molecular weight, M, one obtains

$$
\begin{equation*}
\eta=\text { const. } \sqrt{M} / \pi S^{2} \tag{5}
\end{equation*}
$$

Now, Sugden (" The Parachor and Valency," 1930, p. 32) has shown that the parachor values, P, of various substances are connected with their molecular collisional areas,

Fig. 1.
 πR^{2}, by the relation $P^{4}=$ constant $\times \pi R^{2}$. If the parachor yields a true comparative measure of the molecular volume, then the area function πS^{2} is directly proportional to P^{\ddagger}, whence

$$
\begin{gather*}
\eta=\text { const. } \sqrt{M} / P^{\ddagger} . \tag{6}\\
\text { or } \quad \log P^{\ddagger} \eta=0 \cdot 5 \log M-\lambda_{c} . \tag{7}
\end{gather*}
$$

where λ_{c} is a constant at one temperature and pressure.

The values for the viscosities of the inert gases vary in a chaotic fashion from helium to xenon when considered at the same temperature. This is to be expected, because according to the foregoing it is the product $\log P^{\mathbf{t}_{\eta}} \eta$ which should exhibit variations paralleled by those in M. That this variation does occur is indicated in Table I, which relates to 15°. Parachor values for the inert gases have been computed from the critical temperatures by Lewis (this vol., p. 261), the values being in excellent agreement with those tabulated by Pearson and Robinson (J., 1934, 740). Viscosities are expressed in c.g.s. units $\times 10^{6}$ and are by Schultz and Rankine, the values for helium and argon at 15° being interpolated from the work of Schultz at various temperatures. Fig. 1 shows that the plot of $\log M$ against $\log P^{\mathbf{t}} \eta$ is approximately linear, but the coefficient of $\log M$ is 0.3 and not 0.5 , the line being represented by

$$
\begin{equation*}
0 \cdot 3 \log M=\log P^{\mathbf{t}} \eta+\lambda_{T} \tag{8}
\end{equation*}
$$

where $\lambda_{c} \neq \lambda_{T}$.
In col. 6 are given calculated values for λ_{c}, which show a steady increase from helium
Table I.

	Gas.	P.	$\eta \times 10^{6}$.	M.	$\log \eta P^{\text {m }}$.	λ_{c}.	λ_{T}.
He		21.9	196	$4 \cdot 00$	-2.8141	3•1151	$2 \cdot 9947$
Ne		$25 \cdot 0$	312	$20 \cdot 2$	-2.5739	$3 \cdot 2266$	2.9655
A		53.78	221	39.91	-2.5019	$3 \cdot 3024$	2.9822
Kr		69.72	246	82.90	-2.3803	$3 \cdot 3396$	$2 \cdot 9560$
Xe	.	91.22	222	$130 \cdot 2$	-2.3469	3-4042	2.9812

to xenon, whereas λ_{T} in col. 7 does not fluctuate by more than 1% from the mean value, and the values show no definite trend as was the case with λ_{c}. Owing to lack of data, one cannot determine whether the constants of equation (8) are dependent on temperature,
as will be shown to be the case for liquids. Moreover, it has been observed that consistency in the values of λ_{T} for liquids is undoubtedly better for molecules of similar chemical type. This is to be expected, because similar molecules, owing to similar configurational and cohesive nature, may be expected to yield consistency amongst themselves because the factors producing anomalies affect them to the same degree. This has been shown to be the case with critical-temperature relations by Lewis (loc. cit.) and is probably true for viscosity relations also (cf. Table I).

Part II. The Viscosity of Liquids.

Waller (Phil. Mag., 1934, 18, 579), from a study of the viscosity of liquids at the melting points and boiling points, has observed a rough periodic variation of this function. Such a variation seems to indicate that molecular constitution plays an important part

Fig. 2.

in determining the magnitude of the coefficient of viscosity. Herzog and Kudar (Z. physikal. Chem., 1933, 83, 28) have developed various formulæ connecting the viscosity with stereochemical structure and atomic distances in molecules, and their conclusions also support the view that viscosity is probably closely connected with the molecular volume. Further, Dunstan and Thole (J., 1907, 91, 23) have shown that the equation $\eta \times 10^{6} / V=62$ (where V is the molecular volume) holds very approximately for 60 unassociated liquids, but this relation does not yield a constant result when the parachor is substituted for the molar volume.

On the basis of Andrews's principle of the continuity of state (Phil. Trans., 1876, 2, 421), viz., " that liquid and gaseous states] are only distant stages in a long series of continuous physical changes," it was thought probable that equation (7) which was derived from considerations involving gases might apply equally well to liquids of similar chemical type. Experimental data for various hydrocarbon and halide homologous 3 z
series have completely justified this conclusion. It was found that at constant temperature and for any homologous series, the plot of $\log M$ against $\log P^{\dagger} \eta$ was linear, showing that an equation similar to (8) was obeyed; then from a study of the values of the coefficient of $\log M$ at different temperatures, it was found that the product of this coefficient and the absolute temperature was constant. Hence one obtains

$$
\begin{equation*}
\log P^{\mathbf{t}_{\eta}}=(A / T) \log M-\lambda_{T} . \tag{9}
\end{equation*}
$$

where A is a constant independent of temperature. Fig. 2 gives the plot of $\log P^{\dagger_{n}}$ against (\mathbf{l} / T) $\log M$ for the liquid paraffins at various temperatures, and the parallelism of the lines indicates the constancy of A for a distinct series. In Table II the values for the viscosities as calculated from the known molecular weights and parachors (with $A=666$ for paraffins and $A=1018$ for alkyl iodides) are compared with Prasad's experimental values (J. Indian Chem. Soc., 1933, 10, 143). The mean values of λ_{T} employed in the computation are given in the final column.

In view of the nature of the logarithmic terms involved, the agreement between the computed and the experimental values is all that can be expected. Moreover, it should be noted that λ_{T} is an extremely sensitive function, and small errors in the numerical estimation of the mean value of this term would considerably affect the calculated value for the viscosity.

It is seen from the graph that λ_{F} decreases steadily with increasing temperature, and the relation between this function and temperature was determined by a graphical

Table II.
Paraffins.

Temp.	Obs.	Calc.	$\log P^{\mathbf{7}} \eta^{\prime}$.	$\left(10^{3} / T\right) \log M$.	λ_{T}.
Pentane ($M=72$; $P=\mathbf{2 2 9} \cdot 2$) .					
0°	2894	2894	İ.0350	6.801	$5 \cdot 495$
10	2624	2627	2.9925	$6 \cdot 561$	$5 \cdot 377$
20	2396	2395	$\underline{2} \cdot 9528$	6.337	5-268
30	2200	2200	$\overline{2} \cdot 9159$	6.130	5-167
Hexane ($M=86$; $P=268.2$).					
0	4020	4037	İ-2231	7.087	$5 \cdot 495$
10	3602	3607	İ-1754	6.837	5-377
20	3258	3252	İ-1319	$6 \cdot 606$	5-268
30	2963	2939	$\overline{1} \cdot 0906$	$6 \cdot 387$	$5 \cdot 167$
40	2708	2717	1.0516	6.183	$5 \cdot 066$
50	2483	2478	İ-0139	$5 \cdot 991$	$4 \cdot 977$
60	2288	2303	$\overline{2} \cdot 9783$	$5 \cdot 812$	$4 \cdot 892$
Heptane ($M=100$; $P=307 \cdot 2$).					
0	5236	5318	$\overline{\mathrm{I}} \cdot 3773$	7.324	5-495
10	4653	4696	İ.3261	$7 \cdot 066$	5-377
20	4163	4159	İ-2777	$6 \cdot 825$	5-268
30	3754	3723	İ-2328	$6 \cdot 601$	$5 \cdot 167$
40	3410	3401	İ1911	$6 \cdot 390$	$5 \cdot 066$
50	3105	3081	$\overline{\mathrm{I}}$-1504	6-191	4.977
60	2841	2840	İ1118	6.006	4.889
70	2617	2720	1.0760	5.830	$4 \cdot 791$
80	2413	2413	$\overline{1} \cdot 0390$	$5 \cdot 665$	$4 \cdot 734$
90	2239	2240	$\overline{1} \cdot 0083$	$5 \cdot 508$	$4 \cdot 660$
Octane ($M=114$; $P=346 \cdot 2)$.					
0	7060	6778	$\overline{1} 5411$	$7 \cdot 536$	5-495
10	6154	5903	$\overline{1} .4821$	$7 \cdot 269$	$5 \cdot 377$
20	4828	5200	İ.3768	$7 \cdot 023$	$5 \cdot 268$
30	4628	4605	İ.3582	$6 \cdot 790$	$5 \cdot 167$
40	4328	4151	I-3292	6.573	$5 \cdot 066$
50	3907	3920	I- 2847	$6 \cdot 369$	4.977
60	3551	3412	I-2432	6.179	$4 \cdot 889$
70	3241	3240	I-2035	$5 \cdot 998$	$4 \cdot 791$
80	2971	2851	I-1658	$5 \cdot 828$	$4 \cdot 734$
90	2730	2636	1-1291	$5 \cdot 666$	$4 \cdot 660$

Table II (continued).
Alkyl Iodides.

investigation involving various functions of T. It was found that the plot of λ_{T} against $1 / T$ was linear and that an equation of the type $\lambda_{T}=B / T+C$ gave λ_{T} with an accuracy of within 1%. The manner in which this relation is obeyed is indicated below, the equations used for the various series being given.

$\lambda_{T}=915 / T+2 \cdot 143$.									
Temp., ${ }^{\circ}$ к. 273	283	293	303	313	323	333	343	353	363
λ_{T}, exptl. $\quad 5.495$	$5 \cdot 377$	$5 \cdot 268$	5.167	$5 \cdot 066$	4.977	$4 \cdot 889$	$4 \cdot 791$	$4 \cdot 734$	$4 \cdot 660$
λ_{T}, calc. $\quad 5.495$	$5 \cdot 375$	5-266	5•163	$5 \cdot 066$	4.975	$4 \cdot 891$	4.811	$4 \cdot 735$	$4 \cdot 663$
Alkyl iodides:	$\lambda_{T}=1862 / T+1.906$.								
Temp., ${ }^{\circ}$ к. 273	283	293	303	313	323	333	343		
λ_{T}, exptl. 8.728	$8 \cdot 487$	$8 \cdot 263$	$8 \cdot 054$	$7 \cdot 858$	$7 \cdot 686$	$7 \cdot 499$	$7 \cdot 334$		
λ_{T}, calc. $\quad 8.728$	$8 \cdot 487$	$8 \cdot 261$	$8 \cdot 058$	$7 \cdot 857$	$7 \cdot 686$	$7 \cdot 500$	$7 \cdot 336$		

These considerations lead to a general formula for the variation of the viscosity of liquids in homologous series which has the form

$$
\begin{equation*}
\log P^{\ddagger} \eta=(A \log M-B) / T-C \tag{10}
\end{equation*}
$$

where A, B, and C are independent of temperature and are probably configurational or cohesive functions characterising a particular type of molecule. Table III demonstrates the application of the general equation in the case of the alkyl bromides, viscosities being calculated from the relation

$$
\log P^{\mathbf{\ddagger}} \eta=(988 \log M-1680) / T-2.0585
$$

The agreement is exceptionally good, the calculated results being within 1% of the experimental values. The iso-derivatives of the paraffins, which form a distinct homo-
logous family, have also been found to yield results in excellent agreement with the general equation.

Table III.

$\eta \times 10^{6}$.						$\eta \times 10^{6}$.		$\log P^{\mathbf{4}} \eta . \quad\left(10^{\mathbf{3}} / T\right) \log M$	
Temp.	Obs.	Calc.	$\log P^{\mathbf{t}} \eta$ Eth	T T log	emp	Obs. $=1$	Calc.		
0°	4866	4860	İ-1621	$7 \cdot 461$	20°	4020	4004	İ-0792	6.952
10	4407	4390	İ1192	7-197	30	3678	3677	İ.0407	6.725
Propyl bromide ($M=122 \cdot 9$; $P=202 \cdot 1$).									
0	6509	6522	1. 3506	$7 \cdot 652$	40	4338	4309	1-1744	6.676
. 10	5815	5813	$\underline{1} \cdot 3017$	7.382	50	3966	3949	İ-1355	$6 \cdot 469$
20	5241	5230	$\overline{1} \cdot 2565$	7-131	60	3563	3634	1.0889	6.275
30	4748	4736	I-2136	6.896	70	3374	3368	$\overline{1} \cdot 0652$	6.091

For any one substance, M and P are fixed, and the general equation takes the form $\eta=\alpha \mathrm{e}^{\beta / \tau}$, which is identical with Andrade's well-known equation for the variation of the viscosity of a simple substance with temperature. The Andrade equation has been applied to certain non-associated halogen and hydrocarbon derivatives by Prasad (loc. cit.; Phil. Mag., 1933, 16, 263), who demonstrated the excellence of its application but could find no general relation between α, β, and configuration. From the general equation it is obvious that $\beta=A \log M-B$, and thus β should depend on the molecular weight. In Table IV values of β as determined numerically by Prasad are compared with those calculated from the molecular weights of the various liquids.

Table IV.

Substance	$\mathrm{C}_{5} \mathrm{H}_{12}$.	$\mathrm{C}_{6} \mathrm{H}_{14}$.	$\mathrm{C}_{7} \mathrm{H}_{16}$.	$\mathrm{C}_{8} \mathrm{H}_{18}$.	$\mathrm{CH}_{3} \mathrm{I}$.	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$.	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{I}$.	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{I}$.	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$.	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$.
β (Prasad)	$\mathbf{3 2 8}$	370	406	456	330	$\mathbf{3 5 8}$	$\mathbf{4 0 9}$	$\mathbf{4 4 5}$	$\mathbf{3 3 5}$	380
β (calc.)	$\mathbf{3 2 2}$	$\mathbf{3 7 4}$	417	$\mathbf{4 5 5}$	$\mathbf{3 2 9}$	$\mathbf{3 7 0}$	$\mathbf{4 0 8}$	$\mathbf{4 4 2}$	$\mathbf{3 3 3}$	$\mathbf{3 8 5}$

Similarly, it is observed that the constant term α of Andrade's equation is a function of the parachor and hence of the molecular cross-sectional area. Since A, B, and C remain unchanged for members of one distinct series, many simplifications occur in dealing with the question of mixtures of the same series. For such mixtures it is probable that the viscosity will depend on a mean molecular weight and a mean parachor value for the particular mixture. When liquids of different series are mixed, the problem becomes extremely complicated owing to the variation of the constants concerned. It is probable that this variation accounts for the fact that no expression has yet been derived that satisfactorily accounts for the behaviour of mixed liquids.

